Solução:
O número de permutações de uma palavra com sete letras distintas (MADEIRA)
é igual a 7! = 5040. Neste exemplo formaremos uma quantidade menor de
anagramas, pois são iguais aqueles em que uma letra A aparece na 2ª casa e a outra
letra A na 5ª casa (e vice-versa).
de 2 posições. Para a primeira letra A teremos 7 posições disponíveis e para
a segunda letra A teremos 6 posições disponíveis (pois uma das 7 já foi ocupada).
A divisão por 2 é necessária para não contarmos duas vezes posições que formam o mesmo anagrama (como, por exemplo, escolher a 2ª e 5ª posições e a 5ª e 2ª posições).
Agora vamos imaginar que as letras A já foram arrumadas e ocupam a 1ª e 2ª posições:
A A _ _ _ _ _
Nas 5 posições restantes devemos permutar as outras 5 letras distintas, ou seja, temos 5! = 120 possibilidades. Como as 2 letras A podem variar de 21 maneiras suas posições, temos como resposta:
2) Quantos anagramas podemos formar com a palavra PRÓPRIO?
Solução:
Observe que aqui temos 7 letras a serem permutadas, sendo que as letras P, R e O aparecem 2 vezes cada uma e a letra I, apenas uma vez.
da letra P (o mesmo ocorrendo com as letras R e O). O número de permutações
Nenhum comentário:
Postar um comentário