sábado, 2 de novembro de 2013

Prismas

     Na figura abaixo, temos dois planos paralelos e distintos, , um polígono convexo R contido em e uma reta r que intercepta , mas não R:
      Para cada ponto P da região R, vamos considerar o segmento , paralelo à reta r :
      Assim, temos:
      Chamamos de prisma ou prisma limitado o conjunto de todos os segmentos congruentes paralelos a r.



Elementos do prisma
      Dados o prisma a seguir, consideramos os seguintes elementos:
  • bases:as regiões poligonais R e S
  • altura:a distância h entre os planos
  • arestas das bases:os lados ( dos polígonos)
  • arestas laterais:os segmentos
  • faces laterais: os paralelogramo AA'BB', BB'C'C, CC'D'D, DD'E'E, EE'A'A
Classificação
      Um prisma pode ser:
  • reto: quando as arestas laterais são perpendiculares aos planos das bases;
  • oblíquo: quando as arestas laterais são oblíquas aos planos das bases.
Veja:
prisma reto
prisma oblíquo
    Chamamos de prisma regular todo  prisma reto cujas bases são polígonos regulares:
prisma regular triangular
prisma regular hexagonal
Observação: As faces de um prisma regular são retângulos congruentes.


Secção
      Um plano que intercepte todas as arestas de um prisma determina nele uma região chamada secção do prisma.
        Secção transversal é uma região determinada pela intersecção do prisma com um plano paralelo aos planos das bases ( figura 1). Todas as secções transversais são congruentes ( figura 2).

Áreas
      Num prisma, distinguimos dois tipos de superfície:as faces e as bases. Assim, temos de considerar as seguintes áreas:
a) área de uma face (AF ):área de um dos paralelogramos que constituem as faces;
b) área lateral ( AL ):soma das áreas dos paralelogramos que formam as faces do prisma.
      No prisma regular, temos:
AL = n . AF (n = número de lados do polígono da base)
c) área da base (AB): área de um dos polígonos das bases;
d) área total ( AT): soma da área lateral com a área das bases
AT = AL + 2AB
      Vejamos um exemplo.
      Dado um prisma hexagonal regular de aresta da base a e aresta lateral h, temos:






Se ainda houver duvidas assista ao vídeo para maior entendimento:


 




Exercícios:


Questão 1
Qual o volume de concreto utilizado na construção de uma laje de 80 centímetros de espessura em uma sala com medidas iguais a 4 metros de largura e 6 metros de comprimento?  


Questão 2

A área total de um cubo cuja diagonal mede 5√3 cm é:

a) 140 cm²
b) 150 cm²
c) 120√2 cm²
d) 100√3 cm²
e) 450 cm²



Questão 3

As medidas das arestas de um paralelepípedo retângulo são proporcionais a 2, 3 e 4. Se sua diagonal mede 2√29 cm, seu volume, em centímetros cúbicos, é:
a) 24
b) 24√29
c) 116
d) 164
e) 192


Questão 4
Em uma piscina retangular com 10 m de comprimento e 5 m de largura, para elevar o nível de água em 10 cm são necessários:
a) 500 l de água
b) 5 000 l de água
c) 10 000 l de água
d) 1 000 l de água
e) 50 000 l de água


Questão 5
Uma caixa de papelão será fabricada por uma indústria com as seguintes medidas: 40 cm de comprimento, 20 cm de largura e 15 cm de altura. Essa caixa irá armazenar doces na forma de um prisma com as dimensões medindo 8 cm de comprimento, 4 cm de largura e 3 cm de altura. Qual o número de doces necessários para o preenchimento total da caixa fabricada?

 Resoluções:


 Questão 1






Questão 2



A diagonal de um cubo pode ser calculada através da seguinte expressão matemática:

d = a√3. Foi fornecido que a medida da diagonal do cubo é 5√3, então:

A medida da aresta desse cubo mede 5 cm. Dessa forma, cada face do cubo medirá:
A = 5 * 5
A = 25 cm²
Sabendo que o cubo possui 6 faces laterais temos:
Área Total: 6 * 25
Área Total: 150 cm²
A área total do cubo com diagonal medindo 5√3 cm é igual a 150 cm².
Resposta correta: item b.


Questão 3








 




 Questão 4



A medida correspondente a 10 cm forma um paralelepípedo de medidas 10 m, 5 m e 10 cm. Transformando 10 cm em metros temos 0,1. Dessa forma:
V = 10 * 5 * 0,1
V = 5 m³
V = 5000 litros
Resposta correta: item b.

Questão 5


Volume da caixa

V = 40 * 20 * 15
V = 12000 cm³
Volume do doce
V = 8 * 4 * 3
V = 96 cm³
Número total de doces armazenados na caixa
12000 / 96 = 125
Serão armazenadas 125 barras de doces na caixa com as dimensões fornecidas. 

Nenhum comentário:

Postar um comentário